N {n infty} sum _ {i = 1} ^ n frac {3} {n} [( frac {i} {n}) ^ 2 + 1] ...... ... ??

N {n infty} sum _ {i = 1} ^ n frac {3} {n} [( frac {i} {n}) ^ 2 + 1] ...... ... ??
Anonim

תשובה:

#4#

הסבר:

# = n => oo (3 / n ^ 3) sum_ {i = 1} ^ {i = n} i ^ 2 + (3 / n) sum_ {i = 1} ^ {i = n} 1 #

# "(הנוסחה של Faulhaber)" #

# n /> oo (3 / n ^ 3) n (n + 1) (2n + 1)) / 6 + (3 / n) n # #

# n /> oo (3 / n ^ 3) n ^ 3/3 + n ^ 2/2 + n / 6 + (3 / n) n # #

# n lim_ {n-> oo} 1 + ((3/2) / n + (1/2)) / n ^ 2 + 3 # #

# = lim_ {n-> oo} 1 + 0 + 0 + 3 #

#= 4#

תשובה:

# 4#.

הסבר:

הנה אחר דרך ל לפתור ה בעיה:

נזכיר כי, # # int_0 ^ 1f (x) dx = lim_ (n to oo) sum_ (i = 1) ^ n1 / nf (i / n) … (כוכב) #.

#:. "The Reqd Lim. =" Lim_ (n to oo) sum_ (i = 1) ^ n3 / n {(i / n) ^ 2 + 1} #, # = 3 lim_ (n to oo) sum_ (i = 1) ^ n1 / n {(i / n) ^ 2 + 1} #, # = 3int_0 ^ 1 {(x) ^ 2 + 1} dx ………… מכיוון, (כוכב) #,

# = 3 x ^ 3/3 + x _0 ^ 1 #, # = x ^ 3 + 3x _0 ^ 1 #, # = 1 ^ 3 + 3xx1- (0 ^ 3 + 3xx0) #, #RArr "Reqd Lim. =" 4 #.