השתמש העקרונות הראשונים כדי למצוא את שיפוע של y = tanh (x)?

השתמש העקרונות הראשונים כדי למצוא את שיפוע של y = tanh (x)?
Anonim

בהתחשב # y = f (x) #, #f '(x) = lim_ (hto0) (f (x + h) -f (x)) / h #

# ('x) = lim_ (hto0) (tanh (x + h) -tan (x)) / h #

(t) (tanh (x)) tanh (h)) / (1) tANH (x) tanh (h)) - tan (x) / h #

(t) (tanh (x) + tanh (h) tanh (x) + tanh (h) (x)) / (1 + tanh (x) tanh (h))) / h #

# (x) = lim (h) 0 ((tanh (x) + tanh (h) -tanh (x) -tanh (h) tanh ^ 2 (x)) / (1 + tanh (x) tanh (h))) / h #

(t) (t) (t) (t) (t) (t) (t) (x) tanh (h) ח))) #

# (x) = lim_ (hto0) (tanh (h) -tanh (h) tanh ^ 2 (x)) / (h (1 + tanh (x) tanh (h))) #

# (x) = lim_ (hto0) (tanh (h) (1-tanh ^ 2 (x))) (/ h (1 + tanh (x) tanh (h))) #

# (x) = lim_ (ht0) (tanh (h) sech ^ 2 (x) / (h (1 + tanh (x) tanh (h))) #

(h) (h) (h) (h) (h) (h) (h) (h) (1)

# (x) = lim (h) 0 (h) 0 (h) / h (h) 0 (ht0) sech ^ 2 (x) / cush (h) (1 + tanh (x) tanh (h)) #

(#) (1) tanh (x) tanh (0)) # #

#f '(x) = 1 * sech ^ 2 (x) / (1 (1 + 0) #

#f '(x) = sech ^ 2 (x) #