כיצד אתם משלבים (2x) / (x-1) (x + 1)) באמצעות שברים חלקי?

כיצד אתם משלבים (2x) / (x-1) (x + 1)) באמצעות שברים חלקי?
Anonim

תשובה:

#ln | x 1 | + ln | x-1 | + C #שבו C הוא קבוע

הסבר:

הביטוי הנתון ניתן לכתוב כמספר חלקי של שברים:

# (2x) / (x + 1) (x-1) (x-1) = 1 (x + 1) + 1 (x-1) #

עכשיו בואו לשלב:

#int (2x) / (x + 1) (x-1)) dx #

# int1 / (x + 1) + 1 / (x-1) dx #

# int1 / (x + 1) dx + int1 / (x-1) dx #

# (x + 1)) / (x + 1) + int (d (x-1)) (x-1) #

#ln | x 1 | + ln | x-1 | + C #שבו C הוא קבוע