תשובה:
ה
הסבר:
ה
ה
לסיכום:
ה
מה עושה מבחן Z- למדוד?
מבחן Z הוא מבחן סטטיסטי המשמש לקבוע אם שתי אוכלוסיות, mu_1 ו- mu_2 = 0 עם שונות ידועה שונות. מבחן Z מניח גודל מדגם גדול והפצה נורמלית. למעשה, התפלגות Z היא Z = N (mu = 0, sigma)
מה ההבדל בין מבחן מרובע צ'י של עצמאות לבין מבחן כיכר צ'י להומוגניות?
צ'י מבחן מרובע של עצמאות עוזר לנו למצוא אם שתי תכונות או יותר קשורות או לא. אם משחק שחמט מסייע להגביר את המתמטיקה של הילד או לא. זה לא מדד של מידת הקשר בין התכונות. הוא רק מספר לנו אם שני עקרונות סיווג קשורים באופן משמעותי או לא, ללא התייחסות להנחות כלשהן בנוגע למערכת היחסים.צ 'י מרובע הבדיקה של ההומוגניות היא הרחבה של צ' י מרובע הבדיקה של עצמאות ... בדיקות של הומוגניות שימושיים כדי לקבוע אם 2 או יותר דוגמאות אקראיות עצמאיות נמשכים מאותה אוכלוסייה או מאוכלוסיות שונות. במקום מדגם אחד - כפי שאנו משתמשים בבעיית עצמאות, כאן יש לנו שתי דוגמאות או יותר. שני סוגי הבדיקות עוסקים בנתונים צולבים צולבים. שניהם משתמשים בסט
השתמש מבחן מבחן כדי למצוא את ההתכנסות של הסדרה הבאה?
הסדרה היא שונה, מכיוון שהגבול של יחס זה הוא 1> lim_ (n-> oo) a_ (n + 1) / a_n = lim_ (n-> oo) (4 (n + 1/2)) (3 (n + 1)) = 4/3> 1 תן a_ להיות טווח n-th של סדרה זו: a_n = ((2n)!) / (3 ^ n (n!) ^ 2) ואז a_ (n + 1 ) (+ 2 (n + 1)) / (3 + n) 1 (n + 1)!) ^ 2) = ((2n + 2)!) / (3 * 3 ^ n ( (n + 1)!) (2 + 3) n (n!) ^ 2 (n + 1) ^ 2 = = = (2n + 2)) / (3 (n + 1) ^ 2) = a_n * (2n + 1) (2n) 2 (n + 1) /) 3 (n + 1) ^ 2) a (n + 1) = a_n * (2 (2n + 1)) / (3 (n + 1) a_ (n + 1) (n +>) a_ (n + 1) / a_n = lim_ (n-> oo) / a_n = (n + 1/2)) / (3 n = 1) (4 (n + 1/2)) / (3 (n + 1)) = 4/3> 1 אז הסדרה היא שונה.