תשובה:
הסבר:
מ
# "h" ^ 2 = "a" ^ 2 + "b" ^ 2 #
איפה
# "h =" # אורך הצד hypotenuse# "a =" # אורך רגל אחת# "b =" # אורך רגל נוספת
רגל אחת במשולש הימני היא 5 וה hypotenuse הוא 13. מהו אורך הרגל השנייה?
אנחנו יכולים פשוט להשתמש pythagorean משפט פשוט על בעיה זו אנו יודעים כי הרגל היא 5 ו hypotenuse הוא 13, אז אנחנו מתחברים ^ ^ 2 + b ^ 2 = c ^ 2 שבו C הוא hypotenuse ו b הם הרגליים 5 ^ 2 + b ^ 2 = 13 ^ 2 ואנחנו פותרים ב, הרגל החסרה 25 + b ^ 2 = 169 b ^ 2 = 144 קח את השורש הריבועי החיובי ואנו מוצאים כי ב 12 = אורך הרגל השנייה J 12
רגל אחת של משולש ימין היא 96 אינץ '. איך אתה מוצא את hypotenuse ואת הרגל השנייה אם אורך hypotenuse עולה 2.5 פעמים את הרגל השנייה של 4 אינץ '?
השתמש Pythagoras להקים x = 40 ו- h = 104 תן x להיות הרגל השנייה ואז hypotenuse h = 5 / 2x +4 ואנחנו נאמר את הרגל הראשונה y = 96 אנחנו יכולים להשתמש משוואת Pythagoras x ^ 2 + y ^ (2 / 4x2 / 2/4 + 2 + 2 + 2 + 2 ^ 2 = 5 × 2 × + 9216 = 25x ^ 2/4 + 20 x +9200 = 0 הכפלת הכביסה על ידי 4 × 2 × 2 + 80x -36800 = 0 באמצעות הנוסחה הריבועית x = (-b + -qqrt (b ^ 2 - 4ac)) / (2a) x = (-) 80 כאשר אנו מתמודדים עם משולש אמיתי, אנו יכולים להתעלם מהתשובה השלילית, כאשר אנו עוסקים מחדש במשולש אמיתי, אז את הרגל השנייה = 40 hypotenuse h = 5 * 40/2 +4 = 104
רגל אחת של משולש ימין היא 96 אינץ '. איך אתה מוצא את hypotenuse ואת הרגל השנייה אם אורך hypotenuse עולה על 2 פעמים את הרגל השנייה של 4 אינץ '?
Hypotenuse 180.5, רגליים 96 ו 88.25 כ. תן הרגל הידועה להיות c_0, hypotenuse להיות ח, את עודף של מעל 2C כמו דלתא ואת הרגל לא ידוע, ג. אנו יודעים כי c ^ 2 + c_0 ^ 2 = h ^ 2 (Pytagoras) גם h-2c = דלתא. תת-סמך לפי h נקבל: c ^ 2 + c_0 ^ 2 = (2c + דלתא) ^ 2. מפשט, c + 2 + 4delta c + דלתא ^ 2-c_0 ^ 2 = 0. פתרון עבור c אנחנו מקבלים. c = (4delta pm sqt (16delta ^ 2-4 (דלתא ^ 2-c_0 ^ 2))) / 2 רק פתרונות חיוביים מותרים c = (2sqrt (4delta ^ 2-delta ^ 2 + c_0 ^ 2) -4 delta ) / 2 = sqrt (3delta ^ 2 + c_0 ^ 2) -2 delta