תשובה:
ראה הסבר להלן
הסבר:
# 6sinA + 8cosA = 10 #
מחלקים את שני הצדדים #10#
# 3 / 5sinA + 4 / 5cosA = 1 #
תן # cosalpha = 3/5 # ו # sinalpha = 4/5 #
# cosalpha = cosalpha / sinalpha = (3/5) / (4/5) = 3/4 #
לכן, # sinAcosalpha + sinalphacosA = חטא (+ אלפא) = 1 #
לכן, # A + אלפא = pi / 2 #, #mod 2pi #
# A = pi / 2-alpha #
# tanA = tan (pi / 2-alpha) = cotalpha = 3/4 #
# tana = 3/4 #
# QED #
תשובה:
ראה למטה.
הסבר:
# או, 6sinA - 10 = -8 cosa #
#or, (6sinA -10) ^ 2 = (-8 cosa) ^ 2 #
#or, 36sin ^ 2A- 2 * 6sinA * 10 + 100 = 64cos ^ 2A #
#or, 36sin ^ 2A - 120sinA + 100 = 64cos ^ 2A #
#or, 36sin ^ 2A - 120sinA + 100 = 64 (1 - sin ^ 2A) #
#or, 36sinA - 120sinA +100 = 64 - 64Sin ^ 2A #
#or, 100 sin = 2A - 120SinA + 36 = 0 #
#or, (10sinA-6) ^ 2 = 0 #
#or, 10sinA - 6 = 0 #
#or, SinA = 6/10 #
#, או SinA = 3/5 = p / h #
באמצעות משפט Pythagoras, אנחנו מקבלים
# b ^ 2 = h ^ 2 - p ^ 2 #
#or, b ^ 2 = 5 ^ 2 - 3 ^ 2 #
#or, b ^ 2 = 25 - 9 #
#or, b ^ 2 = 16 #
#or, b = 4 #
# לכן, TanA = p / b = 3/4 #
האם התשובה נכונה?
תשובה:
לראות פתרון
הסבר:
# 6sinA + 8cosA = 10 #
חלוקת שני הצדדים על ידי #sqrt (6 ^ 2 + 8 ^ 2) #=#10#
# (6sinA) / 10 + 8cosA / 10 = 10/10 = 1 #
# cosalphasinA + sinalphacosA #=1
איפה # tanalpha = 4/3 # או # alpha = 53degree #
זה הופך ל
#sin (alpha + A) = sin90 #
#alpha + A = 90 #
# A = 90-alpha #
לוקח # tan #שני הצדדים
# tanA = tan (90-alpha) #
# tanA = cotalpha #
# tana = 3/4 #
# 6sinA + 8cosA = 10 #
# => 3sinA + 4cosA = 5 #
# => (3/5) sinA + (4/5) cosA = 1 #
# 3) + 5 (cOSA = (sinA) ^ 2 + (cosa) ^ 2 #
# color (red ((sin = 2A + cos ^ 2A = 1) #
# => (3/5) sinA + (4/5) cosA = sinA * sinA + cosa * cosa #
# => sinA = 3/5 ו cosa = 4/5 #
לפיכך, # 3/5/4/4/4/3/4 /